本发明公开了一种风力发电机部件故障分类检测方法,属于风力发电机状态监测技术领域,包括以下步骤:步骤S1对风电机组监测控制和数据采集系统采集到的每个数据输入信号进行小波分解,得到原始输入信号的局部信号;步骤S2将原始信号和分解得到的局部信号分别输入到长短期记忆神经网络中进行特征学习;步骤S3将全局特征和局部特征每个子网络的输出连接起来,进行动态加权处理实现全局特征和局部特征的自适应动态融合;步骤S4将分类结果通过滑动窗口和多数投票的方法以生成最终的检测结果。本发明能够有效的提高风力发电机部件发生故障分类准确率,从而及时对风力发电机故障部件进行处理和维护,避免风力发电机部件的深度伤害。