本发明公开了一种基于脑电特征迁移学习的驾驶状态检测方法及系统,包括:采集被试用户的脑电信号,对所述脑电信号进行预处理,提取特征构建第一目标特征集;从多组第一源数据集中筛选疲劳特征集和情绪数据集,组合成第二源特征集;通过第一迁移学习算法进行实例迁移,得到第三源特征集;基于第三源数据集和第一目标数据集使用第二迁移学习算法进行特征迁移学习,得到第四源特征集、第二目标数据集;使用第四源数据集构建多分类判别模型,将第二目标特征集输入多分类判别模型,得到被试用户的驾驶状态结果。本发明在保证准确率的同时减少了样本标注的繁琐工作,大大提高分类识别的鲁棒性和准确性。