本发明公开了基于BP神经网络的惯性导航室内定位方法,包括运动数据采集与预处理阶段、离线训练阶段和实时定位阶段。数据采集是通过左、右脚腕可穿戴设备采集人员两脚腕处运动数据、人员身高和步长;数据预处理是利用多传感器信息融合处理得到7个神经网络输入数据‑左、右腿部姿态角变化量θ1和θ2、脚腕处加速度均值average、方差variance、左、右脚步伐持续时间time1和time2以及身高stature;离线训练阶段包括:建立神经网络步长估计模型;将7个输入数据和步长数据输入神经网络进行训练;实时定位阶段包括:右脚腕可穿戴设备内部进行步伐识别、实时预测步长以及利用步长和方向角通过航位推算实现实时定位。本发明提高了室内定位的精度、实时性,增强了可靠性。