数字创意

当前位置: 首页 > 科技资源 > 专利推介 > 数字创意 > 正文

一种基于强化学习和加权元路径的语义推荐方法

专利号:ZL202111203509.2

专利类型:发明授权

发明人:宫继兵; 郎月; 李学文

公开(公告)日:2024-5-14

转化方式:转让、许可、作价入股

联系人:周老师

联系电话:0335-8518633

发明人 宫继兵; 郎月; 李学文 公开(公告)日 2024-5-14
专利类型 发明授权 转化方式 转让、许可、作价入股
联系人 周老师 联系电话 0335-8518633
本发明公开了一种基于强化学习和加权元路径的语义推荐方法,属于推荐算法技术领域,包括收集用户各类实体属性信息、获取记录中用户和物品的异构信息网络,对提取的记录以及各类实体属性信息进行预处理并分析,利用强化学习算法计算不同元路径的权重,自主学习不同元路径的权重,构建马尔可夫决策过程,对元路径的权重进行训练,得到元路径选择权重的信息并生成记录,构建深层决策网络并训练,设计经验池、预测网络和结果网络,对输出的奖励值进行拟合得到最佳权重,依据得到的最佳权重的元路径,计算用户相似度,并选取Top‑N进行排列,完成推荐。本发明能够结合用户的购买记录以及其他信息进行个性化推荐,提高了推荐的准确性。

关闭

河北省秦皇岛市河北大街西段438号燕山大学世纪楼1307

0335-8057035  0335-8067036

jszy@ysu.edu.cn

©版权所有:燕山大学科技产业促进中心

  • 燕山大学

  • 科技产业促进中心