本发明涉及一种基于深度神经网络的脊柱定位方法,属于计算机视觉跟踪技术领域,包括以下步骤:A、采用传统特征提取模块提取传统通用特征;B、采用医学特征提取模块提取专门的医学影像特征;C、采用定位模块对传统特征提取模块和医学特征提取模块提取的特征进行处理,得到锥体与椎间盘的具体位置;D、将上述模块组成系统,采用多任务损失分别对定位网络I和定位网络Ⅱ进行单独训练,且两个网络训练采用的定位标签以及医学影像图片相同。本发明融合了传统深度网络可使用预训练模型的特点以及医学影像特征提取网络的少样本学习的特点,并引入新的损失函数以及相应的标签制作方法,并使用多任务损失,从而提升了脊柱定位的精度以及鲁棒性。