新能源汽车

当前位置: 首页 > 科技资源 > 专利推介 > 新能源汽车 > 正文

多尺度时空卷积深度信念网络的风力发电机故障诊断方法

专利号:ZL202010197882.0

专利类型:发明授权

发明人:王洪斌; 王红; 江国乾; 王跃灵; 郑正; 苏博

公开(公告)日:2020-11-27

转化方式:转让、许可、作价入股

联系人:周老师

联系电话:0335-8518633

发明人 王洪斌; 王红; 江国乾; 王跃灵; 郑正; 苏博 公开(公告)日 2020-11-27
专利类型 发明授权 转化方式 转让、许可、作价入股
联系人 周老师 联系电话 0335-8518633
本发明提出一种多尺度时空卷积深度信念网络的风力发电机故障诊断方法,该方法利用SCADA多变量时间序列固有的时空相关性和交互性特性,设计具有不同卷积核结构的卷积深度信念网络以级联的方式捕获传感器变量间的时空相关性信息,同时以并行的方式在多个滤波器尺度下挖掘变量间交互互补的特征,上述技术手段融合了时空依赖性提取和多尺度特征学习方法,因此能够提取更为丰富的故障诊断信息,与传统的卷积深度信念网络模型及其变体相比,本发明能够增强分类性能,为风力发电机故障诊断领域提供了新的途径。

关闭

河北省秦皇岛市河北大街西段438号燕山大学世纪楼1307

0335-8057035  0335-8067036

jszy@ysu.edu.cn

©版权所有:燕山大学科技产业促进中心

  • 燕山大学

  • 科技产业促进中心