本发明涉及一种跨风电机组的迁移故障诊断方法,属于风电机组故障诊断技术领域,包括利用风电机组的SCADA系统采集多组同风场同类型风机数据,并进行数据预处理及数据打标;将机组划分源域机组和目标域机组,源域机组数据和少量目标域机组数据作为训练集,其余的目标域数据按比例划分验证集和测试集;针对风电机组数据设计深度卷积神经网络特征学习模块,进行特征的融合提取,得到不同机组数据的深层特征;将分布对齐后的特征输入到分类层中,输出得到目标域风电机组数据的故障类型。本发明能够多准则加权联合度量,自适应减小机组间数据多元分布异构,提高模型对不同风机数据的泛化能力以及在新目标机组的故障诊断精度。