本发明公开了一种基于深度迁移学习的理论线损率预测模型,涉及人工智能算法在电力系统应用的技术领域,本发明包括以下步骤 : 首先将训练好的深度线损率学习模型作为源模型,把训练好的底层的DBN深度信念网络直接迁移到待预测的模型中(冻结)。然后,为避免深度学习模型训练时陷入局部最优,引入迁移学习的概念,结合预测的数据,通过MMD方法度量源、目标数据的分布差异并筛选源训练数据,用筛选的训练数据微调已训练好的DNN深度神经网络,最终得到基于TDBN‑DNN的深度迁移学习模型。最后用电网运行数据作为模型输入来进行线损率预测;解决了在电网坚强、运行高效、节能环保的要求和智能电网的构建问题。