本发明公开了一种预测冠状动脉原位病变介入手术支架尺寸的深度学习方法,属于医学技术领域,包括获取实验所需要的冠脉造影图像数据、利用深度学习方法训练多任务分类与回归预测模型、训练完成后验证多任务分类与回归预测模型的性能、对多任务分类与回归预测模型进行测试、将测试好的多任务分类与回归预测模型应用于冠脉介入手术支架的选择;所述多任务分类与回归预测模型包括由交叉熵损失函数监督训练的分类支路和由均方误差损失函数进行监督训练的回归回路。本发明可以帮助医生快速准确地确定所需要的冠状动脉原位病变介入手术支架的最优尺寸,能够有效提高手术效率并提升手术成功率。